

SET-3

Series HFG1E/3

प्रश्न-पत्र कोड 56/3/3 Q.P. Code

रोल न Roll				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours $Maximum\ Marks:70$

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड़ को परीक्षार्थी उत्तर-पुस्तिका के मुख-पष्ट पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains **23** printed pages.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **35** questions.
- Please write down the serial number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

56/3/3

P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पिढ़ए और उनका सख़्ती से पालन कीजिए:

- (i) इस प्रश्न-पत्र में **35** प्रश्न हैं । **सभी** प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **क, ख, ग, घ** एवं **ङ** /
- (iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
- (iv) खण्ड ख में प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं।
- (v) **खण्ड ग** में प्रश्न संख्या **26** से **30** तक लघु-उत्तरीय प्रकार के **तीन-तीन** अंकों के प्रश्न हैं।
- (vi) **खण्ड घ** में प्रश्न संख्या **31** तथा **32** केस-आधारित **चार-चार** अंकों के प्रश्न हैं।
- (vii) खण्ड ङ में प्रश्न संख्या 33 से 35 दीर्घ-उत्तरीय प्रकार के **पाँच-पाँच** अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों में खण्ड घ के 2 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।

 $18 \times 1 = 18$

1. कोलराऊश ने प्रबल विद्युत्-अपघट्य के लिए निम्नलिखित संबंध दिया :

$$\wedge = \wedge_0 - A\sqrt{C}$$

निम्नलिखित समता में से कौन-सा सत्य है ?

- (a) $\wedge = \wedge_{\circ}$ क्योंकि $C \longrightarrow \sqrt{A}$
- (b) $\wedge = \wedge_{\circ}$ क्योंकि $C \longrightarrow 0$
- (c) $\Lambda = \Lambda_{\circ}$ क्योंकि $C \longrightarrow \infty$
- (d) $\wedge = \wedge_{\circ}$ क्योंकि $C \longrightarrow 1$

56/3/3

General Instructions:

Read the following instructions carefully and strictly follow them:

- (i) This question paper contains 35 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** Sections **A**, **B**, **C**, **D** and **E**.
- (iii) In **Section A** Questions no. **1** to **18** are multiple choice (MCQ) type questions, carrying **1** mark each.
- (iv) In **Section B** Questions no. **19** to **25** very short answer (VSA) type questions, carrying **2** marks each.
- (v) In **Section C** Questions no. **26** to **30** are short answer (SA) type questions, carrying **3** marks each.
- (vi) In **Section D** Questions no. **31** and **32** are case-based questions carrying **4** marks each.
- (vii) In **Section E** Questions no. **33** to **35** are long answer (LA) type questions carrying **5** marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is **not** allowed.

SECTION A

Questions no. 1 to 18 are Multiple Choice (MCQ) type Questions, carrying 1 mark each. 18×1=18

1. Kohlrausch gave the following relation for strong electrolyte:

$$\wedge = \wedge_{0} - A\sqrt{C}$$

Which of the following equality holds true?

(a)
$$\wedge = \wedge_{\circ} \text{ as C} \longrightarrow \sqrt{A}$$

(b)
$$\wedge = \wedge_{\circ} \text{ as C} \longrightarrow 0$$

(c)
$$\wedge = \wedge_{\circ} \text{ as C} \longrightarrow \infty$$

(d)
$$\wedge = \wedge_{\circ} \text{ as C} \longrightarrow 1$$

56/3/3

3

- निम्नलिखित में से कौन-सा ऐल्किल हैलाइड वर्ग का सदस्य है ? 2.
 - $\mathrm{CH}_2 = \mathrm{CH} \mathrm{Cl}$ (a)
 - (b) $\mathrm{CH}_2 = \mathrm{CH} - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{Cl}$
 - $\mathrm{CH}_2 = \mathrm{CH} \mathrm{CH} \mathrm{CH}_3$ (c)
 - $\mathrm{CH} \equiv \mathrm{C} \mathrm{CH}_2 \mathrm{Cl}$ (d)
- दो द्रवों के स्थिरक्वाथी मिश्रण का क्वथनांक दोनों द्रवों के क्वथनांक से उच्चतर होता है जब 3. यह:
 - राउल्ट नियम से अत्यधिक ऋणात्मक विचलन दर्शाता है। (a)
 - राउल्ट नियम से विचलन नहीं दर्शाता है। (b)
 - राउल्ट नियम से अत्यधिक धनात्मक विचलन दर्शाता है। (c)
 - राउल्ट नियम का पालन करता है। (d)
- प्रोपीन को 1-प्रोपेनॉल में रूपान्तरित करने के लिए, निम्नलिखित में से कौन-से अभिकर्मक 4. और परिस्थितियाँ प्रयुक्त होनी चाहिए ?
 - सांद्र H_2SO_4 ; H_2O और गरम करना (a)
 - B_2H_6 ; H_2O_2/OH^- (b)
 - तनु H₂SO₄ (c)
 - H_2O/H^+ (d)
- CH3COCl को ऐसीटोन में रूपांतरित करने के लिए निम्नलिखित अभिकर्मकों में से कौन-सा **5.** चुनेंगे ?
 - (a) $(CH_3)_2Cd$

 CH_3MgBr (b)

 CH_3Cl (c)

- $(CH_3O)_2Mg$ (d)
- अमोनिया की अधिक मात्रा में मेथिल क्लोराइड के साथ अभिक्रिया मुख्यत: देगी : 6.
 - मेथिलऐमीन (a)
 - डाइमेथिलऐमीन (b)
 - टेट्रामेथिलअमोनियम क्लोराइड (c)
 - ट्राइमेथिलऐमीन (d)

56/3/3

- **2.** Which of the following belongs to the class of alkyl halides?
 - (a) $CH_2 = CH Cl$
 - (b) $CH_2 = CH CH_2 CH_2 Cl$
 - (c) $CH_2 = CH CH CH_3$
 - (d) $CH = C CH_2 Cl$
- **3.** An azeotropic mixture of two liquids has a boiling point higher than either of the two liquids when it:
 - (a) shows large negative deviation from Raoult's law.
 - (b) shows no deviation from Raoult's law.
 - (c) shows large positive deviation from Raoult's law.
 - (d) obeys Raoult's law.
- **4.** For the conversion of propene into 1-propanol, which of the following reagents and conditions should be used?
 - (a) Conc. $\mathrm{H_2SO_4}$; $\mathrm{H_2O}$ and heat
 - (b) B_2H_6 ; H_2O_2/OH^-
 - ${\rm (c)} \qquad {\rm Dilute} \; {\rm H_2SO_4}$
 - (d) H_2O/H^+
- **5.** Which of the following reagents would one choose to transform $\mathrm{CH_3COCl}$ into acetone ?
 - ${\rm (a)} \qquad {\rm (CH_3)_2Cd}$

 ${\rm (b)} \qquad {\rm CH_3MgBr}$

(c) CH₃Cl

- (d) $(CH_3O)_2Mg$
- **6.** The reaction of ammonia with a large excess of methyl chloride will yield mainly:
 - (a) methylamine
 - (b) dimethylamine
 - (c) tetramethylammonium chloride
 - (d) trimethylamine

56/3/3

7.	ग्लूकोस	। की वलीय संरचना में ऐनोमरी व	कार्बन है :		
	(a)	C-2	(b)	C-3	
	(c)	C-4	(d)	C-1	
8.	विटामि	न B की कमी से हो जाती है :			
	(a)	रिकेट्स			
	(b)	मांसपेशियों की कमज़ोरी			
	(c)	स्कर्वी			
	(d)	बेरी-बेरी			
9.	लेड सं	चायक बैटरी को आवेशित करने	के दौरान कैथो	ड अभिक्रिया द्वारा होता	है:
	(a)	PbSO_4 का निर्माण			
	(b)	${ m Pb}^{2+}$ का ${ m Pb}^{4+}$ में अपचयन			
	(c)	${ m PbO}_2$ और ${ m Pb}$ का बनना			
	(d)	ऐनोड पर Pb का निक्षेपण			
10.	निम्नलि	ाखित में से कौन-से युगल आदश	र् विलयन <i>नहीं</i>	बनाएँगे ?	
	(a)	बेंज़ीन और टालूईन	`	·	
	(b)	नाइट्रिक अम्ल और जल			
	(c)	हेक्सेन और हेप्टेन			
	(d)	एथिल क्लोराइड और एथिल इ	गोमाइड		
11.	_	रम्भिक सान्द्रता को दुगुना किया भिक्रिया की कोटि है :	जाता है, तो उ	अभिक्रिया की अर्ध-आयु	ु दुगुनी हो जाती
	(a)	1	(b)	2	
	(c)	4	(d)	0	
12.	निम्नलि	ाखित आयनों में से किसमें अयुर्ा	ग्मेत d-इलेक्ट्रॉन	ों की संख्या सर्वाधिक है	₹ ?
	(a)	$\mathrm{Fe^{3+}}$	(b)	V^{3+}	
	(c)	Ti ³⁺	(d)	Sc^{3+}	
	[परमाण्	र्] क्रमांक : Fe = 26, V = 23, '	Ti = 22, Sc =	21]	
56/3/3	}		6		

7.	In the	e ring structure of glucos	se, the anom	eric carbon	is:		
	(a)	C-2	(b)	C-3			
	(c)	C-4	(d)	C-1			
8.	Defici	ency of Vitamin B cause	es:				
	(a)	rickets					
	(b)	muscular weakness					
	(c)	scurvy					
	(d)	beri-beri					
9.	The c to the	athode reaction during	the charging	g of a lead	storage battery	leads	
	(a)	formation of $PbSO_4$					
	(b)	reduction of Pb ²⁺ to Pb) ⁴⁺				
	(c)	formation of ${\rm PbO}_2$ and	Pb				
	(d)	deposition of Pb at the	anode				
10.	Which one of the following pairs will <i>not</i> form an ideal solution?						
	(a)	Benzene and Toluene					
	(b)	Nitric acid and Water					
	(c)	Hexane and Heptane					
	(d)	Ethyl chloride and Eth	yl bromide				
11.		nalf-life of a reaction is ed. The order of the reac		hen the in	itial concentrati	on is	
	(a)	1	(b)	2			
	(c)	4	(d)	0			
12.		n of the following ionstrons?	s has the r	maximum	number of unp	aired	
	(a)	$\mathrm{Fe^{3+}}$	(b)	V^{3+}			
	(c)	Ti^{3+}	(d)	$ m V^{3+}$ $ m Sc^{3+}$			
	[Atom	nic number : $Fe = 26, V =$	= 23, Ti = 22	Sc = 21			
56/3/3	,		$\overline{7}$		■ 5 ■ **********************************	P.T.O.	

13. निम्नलिखित में से कौन-सा बहुदंती लिगन्ड है ?

- (a) NH_3
- (b) $H_2N CH_2 CH_2 NH_2$
- (c) $EDTA^{4-}$
- ${\rm (d)} \quad \ \, {\rm C_2O_4^{2-}}$

14. निम्नलिखित उपसहसंयोजन यौगिकों में से कौन-सा बंधनी समावयवता दर्शाता है ?

- (a) $[Co(NH_3)_3Cl_3]$
- (b) $[\text{Co(NH}_3)_5(\text{CO}_3)]\text{Cl}$
- $\mathrm{(c)} \qquad \mathrm{[Co(NH_3)_5NO_2](NO_3)_2}$
- (d) $[Co(en)_3]Cl_3$

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए।

- (a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (c) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (d) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।

15. अभिकथन (A): क्लोरोएथेन की अपेक्षा आयोडोएथेन का नाभिकस्नेही प्रतिस्थापन आसान होता है।

कारण (R): C-I आबंध की तुलना में C-Cl आबंध की आबंध ऊर्जा कम होती है ।

16. अभिकथन (A): अभिक्रिया के लिए कोटि और आण्विकता सदैव समान होते हैं।

कारण (R): जिंटल अभिक्रियाएँ अनेक प्राथिमक अभिक्रियाओं के पदों के क्रम में सम्पन्न होती हैं और सबसे मंद पद वेग निर्धारक होता है।

- **13.** Which of the following is a polydentate ligand?
 - (a) NH_3
 - (b) $H_2N CH_2 CH_2 NH_2$
 - (c) $EDTA^{4-}$
 - (d) $C_2O_4^{2-}$
- **14.** Which of the following coordination compounds exhibits linkage isomerism?
 - (a) $[Co(NH_3)_3Cl_3]$
 - (b) $[\text{Co(NH}_3)_5(\text{CO}_3)]\text{Cl}$
 - $\mathbf{(c)} \qquad [\mathrm{Co(NH_3)_5NO_2}]\mathrm{(NO_3)_2}$
 - (d) $[Co(en)_3]Cl_3$

For Questions number 15 to 18, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.
- **15.** Assertion (A): Nucleophilic substitution of iodoethane is easier than chloroethane.
 - Reason (R): Bond energy of C Cl bond is less than C I bond.
- **16.** Assertion (A): Order and molecularity of a reaction are always same.
 - Reason(R): Complex reactions involve a sequence of elementary reactions and the slowest step is rate determining.

56/3/3

9

17.			· ज़िंक को संक्रमण तत्त्व नहीं माना जाता है। ज़िंक में मूल अवस्था तथा ऑक्सीकृत अवस्था दोनों में ही इसके 3d कक्षक पूर्ण भरित होते हैं।	
18.	अभिक	थन (A) :	\cdot Fe $^{2+}$ अपचायक की भाँति कार्य करता है।	
	कारण	(R):	$3\mathrm{d}^5$ विन्यास के कारण Fe^{3+} अवस्था स्थायी होती है ।	
			खण्ड ख	
19.	निम्नलि दीजिए		भिक्रियाओं से अपेक्षित उत्पादों की संरचनाएँ और आई.यू.पी.ए.सी. नाम $2 imes 1$	1=2
	(क)	$\langle \rangle$	– MgBr की मेथेनैल के साथ अभिक्रिया और उसके पश्चात् जल-अपघटन ।	
	(ख)	<u></u> फ़ीनॉल	की $\mathrm{Br}_2\left(\mathrm{aq}\right)$ के साथ अभिक्रिया ।	
20.	में कित	ना समय	टे अभिक्रिया की अर्ध-आयु 60 मिनट है। 90% अभिकर्मक के समाप्त होने लगेगा ? og 2 = 0·3010, log 3 = 0·4771, log 10 = 1]	2
				_
21.	, ,		भेक्रियाओं से संबंद्ध रासायनिक समीकरण लिखिए :	2
	(क) (ख)		ऐमीन अभिक्रिया थैलिमाइड संश्लेषण	
99	()	•		
22.	एथनाल दीजिए		नीटोन का मिश्रण राउल्ट नियम से किस प्रकार का विचलन दर्शाता है ? कारण	2
23.	(क)		प्राणी शरीर में कार्बोहाइड्रेट किस रूप में संग्रहित रहते हैं ? किसी एक अंग का उल्लेख कीजिए जहाँ यह उपस्थित होते हैं ।	
		(ii)	स्टार्च और सेलूलोस में मूलभूत संरचनात्मक अंतर क्या है ?	2
			अथवा	
	(ख)	निम्नलि	खित के मध्य अन्तर स्पष्ट कीजिए :	2
		(i)	पेप्टाइड बंध और ग्लाइकोसिडिक बंध	
		(ii)	न्यूक्लिओसाइड और न्यूक्लिओटाइड	
56/3/3	3			

17. Assertion (A): Zinc is not regarded as a transition element. Reason(R): In zinc, 3d orbitals are completely filled in its ground state as well as in its oxidised state. Assertion (A): Fe^{2+} acts as a reducing agent. 18. $\mathrm{Fe^{3+}}$ state is stable due to $3\mathrm{d^5}$ configuration. Reason(R): SECTION B 19. Give the structures and IUPAC name of the products expected from the following reactions: $2 \times 1 = 2$ >− MgBr followed by hydrolysis. Reaction of methanal with \langle (a) Reaction of phenol with Br_2 (aq). (b) 20. The half-life of a first order reaction is 60 minutes. How long will it take to consume 90% of the reactant? 2 [Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 10 = 1$] 21. Write the chemical equation involved in the following reactions: 2 (a) Carbylamine reaction (b) Gabriel phthalimide synthesis **22.** What type of deviation from Raoult's law is shown by a mixture of ethanol and acetone? Give reason. 2 23. (a) How are carbohydrates stored in animal body? Mention any (i)one organ where they are present. What is the basic structural difference between starch and (ii) cellulose? 2 OR. Differentiate between: (b) 2 Peptide linkage and Glycosidic linkage (i) (ii) Nucleoside and Nucleotide

CLICK HERE

P.T.O.

m www.studentbro.in

56/3/3

Get More Learning Materials Here:

24. (क) ईंधन सेल को परिभाषित कीजिए और इसके दो लाभ लिखिए।

2

अथवा

(ख) नीचे दिए गए E° मानों का उपयोग करते हुए, प्रागुक्ति कीजिए कि संक्षारण रोकने के लिए लोहे की सतह पर लेपन के लिए कौन-सा बेहतर है और क्यों ?

2

दिया गया है :
$$E_{X^{2+}/X}^{\circ}$$
 = -2.36 V $E_{Y^{2+}/Y}^{\circ}$ = -0.14 V $E_{Fe^{2+}/Fe}^{\circ}$ = -0.44 V

25. कारण दीजिए:

 $2\times1=2$

- (क) ऐसीटिक अम्ल की तुलना में फॉर्मिक अम्ल प्रबलतर अम्ल है।
- (ख) ऐल्डिहाइडों और कीटोनों के ऐल्फा (α)-हाइड्रोजन अम्लीय होते हैं।

खण्ड ग

- **26.** अभिक्रिया वेग दुगुना हो जाता है जब ताप में परिवर्तन 27° C से 37° C तक होता है । अभिक्रिया के लिए सक्रियण ऊर्जा परिकलित कीजिए । $(R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1})$ 3 (दिया गया है : $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)
- **27.** उत्पाद की संरचना लिखिए जब D-ग्लूकोस निम्नलिखित के साथ अभिक्रिया करता है : $3 \times 1 = 3$
 - (क) HI
 - (ख) सांद्र HNO₃
 - (η) Br_2 जल
 - (घ) HCN
- **28.** (क) निम्नलिखित अभिक्रियाओं में A, B और C की संरचनाएँ लिखिए : $2 \times 1\frac{1}{2} = 3$

(i)
$$\sim COOH \xrightarrow{NH_3} A \xrightarrow{Br_2 + NaOH} B$$

$$\xrightarrow{NaNO_2 + HCl} C$$

(ii)
$$CH_3CH_2Br \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{HNO_2} C$$
 अथवा

56/3/3

24. (a) Define fuel cell and write its two advantages.

2

OR

(b) Using E° values of X and Y given below, predict which is better for coating the surface of Iron to prevent corrosion and why?

2

Given: $E_{X^{2+}/X}^{\circ} = -2.36 \text{ V}$ $E_{Y^{2+}/Y}^{\circ} = -0.14 \text{ V}$ $E_{Fe^{2+}/Fe}^{\circ} = -0.44 \text{ V}$

25. Give reasons :

2×1=2

- (a) Formic acid is a stronger acid than acetic acid.
- (b) Alpha (α)-Hydrogens of aldehydes and ketones are acidic.

SECTION C

26. The rate of a reaction doubles when temperature changes from 27°C to 37°C. Calculate energy of activation for the reaction.

 $(R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1})$ (Given : log 2 = 0.3010, log 3 = 0.4771, log 4 = 0.6021)

3

(Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

Write the structure of product when D-Glucose reacts with the following : (any three)

- (a) HI
- (b) Conc. HNO_3
- ${\rm (c)} \quad \ Br_2 \ water \\$
- (d) HCN

28. (a) Write the structures of A, B and C in the following reactions: $2 \times 1 \frac{1}{2} = 3$

(i)
$$A \xrightarrow{\text{COOH}} A \xrightarrow{\text{NH}_3} A \xrightarrow{\text{Br}_2 + \text{NaOH}} B$$

$$\xrightarrow{\text{NaNO}_2 + \text{HCl}} C$$

(ii)
$$CH_3CH_2Br \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{HNO_2} C$$

OR

56/3/3

〔13〕

(ख) आप निम्नलिखित रूपान्तरण कैसे करेंगे :

 $3 \times 1 = 3$

3

3

- (i) ऐनिलीन से p-ब्रोमोऐनिलीन
- (ii) एथेनॉइक अम्ल से मेथैनैमीन
- (iii) ब्यूटेननाइट्राइल से 1-ऐमीनोब्यूटेन
- **29.** 0.3 g ऐसीटिक अम्ल (M = 60 g mol^{-1}) 30 g बेंज़ीन में घोलने पर हिमांक में 0.45°C का अवनमन होता है । यदि यह विलयन में द्वितय बनाता है, तो परिकलित कीजिए कि अम्ल का संगुणन कितने प्रतिशत होगा । (दिया गया है : बेंज़ीन के लिए $K_f = 5.12 \text{ K kg mol}^{-1}$)
- 30. (क) निम्नलिखित अभिक्रिया की क्रियाविधि लिखिए:

$$CH_3 - CH_2 - OH \xrightarrow{H^+} CH_2 = CH_2 + H_2O$$

(ख) क्यूमीन से फ़ीनॉल के विरचन की अभिक्रिया के लिए समीकरण लिखिए।

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । केस को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए ।

31. ऐल्किल हैलाइडों के C-X आबंध की ध्रुवता इनके नाभिकस्नेही प्रतिस्थापन, विलोपन तथा धातु परमाणुओं से अभिक्रिया द्वारा कार्बधात्विक यौगिकों के निर्माण के लिए उत्तरदायी है । ऐल्किल हैलाइडों को ऐल्केनों के मुक्त मूलक हैलोजनन द्वारा, ऐल्कीनों पर हैलोजन अम्लों के योगज द्वारा, ऐल्कोहॉल के -OH समूह को फ़ॉस्फोरस हैलाइड या थायोनिल क्लोराइड अथवा हैलोजन अम्लों के उपयोग से बनाया जाता है । एरिल हैलाइडों को ऐरीनों की इलेक्ट्रॉनस्नेही प्रतिस्थापन अभिक्रिया द्वारा बनाया जाता है । रासायनिक बलगतिकी गुणों के आधार पर नाभिकस्नेही प्रतिस्थापन अभिक्रियाओं को S_N1 व S_N2 अभिक्रियाओं में वर्गीकृत किया गया है । S_N1 व S_N2 अभिक्रियाओं के कियाविधि को समझने के लिए किरेलिटी की महत्त्वपूर्ण भूमिका है ।

56/3/3

(b) How will you convert the following:

 $3 \times 1 = 3$

3

3

- (i) Aniline to p-bromoaniline
- (ii) Ethanoic acid to methanamine
- (iii) Butanenitrile to 1-aminobutane
- **29.** 0.3 g of acetic acid (M = 60 g mol⁻¹) dissolved in 30 g of benzene shows a depression in freezing point equal to 0.45°C. Calculate the percentage association of acid if it forms a dimer in the solution.

(Given: K_f for benzene = $5.12 \text{ K kg mol}^{-1}$)

30. (a) Write the mechanism of the following reaction :

$$CH_3 - CH_2 - OH \xrightarrow{H^+} CH_2 = CH_2 + H_2O$$

(b) Write the equation of the reaction for the preparation of phenol from cumene.

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

31. The polarity of C-X bond of alkyl halides is responsible for their nucleophilic substitution, elimination and their reaction with metal atoms to form organometallic compounds. Alkyl halides are prepared by the free radical halogenation of alkanes, addition of halogen acids to alkenes, replacement of – OH group of alcohols with halogens using phosphorus halides, thionyl chloride or halogen acids. Aryl halides are prepared by electrophilic substitution of arenes. Nucleophilic substitution reactions are categorised into S_N^{-1} and S_N^{-2} on the basis of their kinetic properties. Chirality has a profound role in understanding the S_N^{-1} and S_N^{-2} mechanism.

56/3/3

P.T.O.

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) क्या होता है जब शुष्क ईथर की उपस्थिति में ब्रोमोबेंज़ीन की Mg के साथ अभिक्रिया की जाती है ?
- (ii) निम्नलिखित युगलों में से कौन-सा यौगिक OH^- के साथ $S_N 1$ अभिक्रिया तीव्रता से देगा ?
 - (1) $CH_2 = CH CH_2 Cl$ अथवा $CH_3 CH_2 CH_2 Cl$
 - (2) $(CH_3)_3C Cl$ अथवा CH_3Cl
- (iii) (1) 1-क्लोरोब्यूटेन (2) ब्यूट-1-ईन से 1-आयोडोब्यूटेन के विरचन के समीकरण लिखिए । $2\times 1=2$

अथवा

(iii) निम्नलिखित प्रत्येक अभिक्रिया में मुख्य उत्पादों की संरचना लिखिए : $2 \times 1 = 2$

$$(1)$$
 $CH_3 - CH - CH_3 + KOH \xrightarrow{v \hat{v}} \frac{v \hat{v}}{\eta \xi H} \rightarrow Br$

(2)
$$\leftarrow$$
 + $\text{CH}_3\text{COCl} \longrightarrow$ निर्जलीय $\text{AlCl}_3 \longrightarrow$

32. उपसहसंयोजन यौगिक खनिजों, पादप और प्राणी जगत में विस्तृत रूप से विद्यमान हैं और वैश्लेषिक रसायन, धातुकर्म, जैविक प्रणालियों और औषध के क्षेत्र में अनेक महत्त्वपूर्ण प्रकार्य सम्पन्न करने के लिए जाने जाते हैं । अल्फ्रेड वर्नर के सिद्धान्त के अनुसार, उपसहसंयोजन यौगिकों में विद्यमान धातु परमाणु/आयन दो प्रकार की संयोजकताएँ (प्राथमिक एवं द्वितीयक) का उपयोग करते हैं । समावयवता के गुण का उपयोग करते हुए उन्होंने अनेक उपसहसंयोजन सत्ताओं की ज्यामितीय आकृतियों के बारे में प्रागुक्ति की । संयोजकता आबंध सिद्धांत (VBT) उपसहसंयोजन यौगिकों के बनाने, चुम्बकीय व्यवहार तथा ज्यामितीय आकृतियों का यथोचित स्पष्टीकरण देता है । फिर भी यह सिद्धांत इन यौगिकों के ध्रुवण गुणों के संबंध में कुछ भी नहीं कहता । क्रिस्टल क्षेत्र सिद्धांत (CFT) उपसहसंयोजन यौगिकों में विद्यमान केंद्रीय धातु परमाणु/आयन के d-कक्षकों की ऊर्जाओं की समानता पर विभिन्न क्रिस्टल क्षेत्रों के प्रभाव (लिगन्डों को बिंदु आवेश मानते हुए उनके द्वारा प्रदत्त प्रभाव) की व्याख्या करता है ।

1

Answer the following questions:

- (i) What happens when bromobenzene is treated with Mg in the presence of dry ether?
 - et

1

1

- (ii) Which compound in each of the following pairs will react faster in S_N^1 reaction with OH^- ?
 - $(1) \quad \operatorname{CH}_2 = \operatorname{CH} \operatorname{CH}_2 \operatorname{Cl} \ \text{or} \ \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{CH}_2 \operatorname{Cl}$
 - (2) $(CH_3)_3C Cl$ or CH_3Cl
- (iii) Write the equations for the preparation of 1-iodobutane from
 - (1) 1-chlorobutane
 - (2) but-1-ene. $2 \times 1=2$

OR

(iii) Write the structure of the major products in each of the following reactions: $2 \times 1 = 2$

(1)
$$CH_3 - CH - CH_3 + KOH \xrightarrow{Ethanol heat}$$

32. Coordination compounds are widely present in the minerals, plant and animal worlds and are known to play many important functions in the area of analytical chemistry, metallurgy, biological systems and medicine. Alfred Werner's theory postulated the use of two types of linkages (primary and secondary), by a metal atom/ion in a coordination compound. He predicted the geometrical shapes of a large number of coordination entities using the property of isomerism. The Valence Bond Theory (VBT) explains the formation, magnetic behaviour and geometrical shapes of coordination compounds. It, however, fails to describe the optical properties of these compounds. The Crystal Field Theory (CFT) explains the effect of different crystal fields (provided by the ligands taken as point charges) on the degeneracy of d-orbital energies of the central metal atom/ion.

56/3/3

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) जब उपसहसंयोजन यौगिक ${
 m NiCl}_2$. $6{
 m H}_2{
 m O}$ को ${
 m AgNO}_3$ विलयन के साथ मिलाया गया, तो प्रति मोल यौगिक के लिए 2 मोल ${
 m AgCl}$ अवक्षेपित हुए । संकुल का संरचनात्मक सूत्र एवं निकैल आयन की द्वितीयक संयोजकता लिखिए।
- ${
 m (ii)}~~{
 m [Co(NH_3)_5(SO_4)]Cl}$ के आयनन समावयव का आई.यू.पी.ए.सी. नाम लिखिए ।
- (iii) संयोजकता आबंध सिद्धांत का उपयोग करते हुए, निम्नलिखित की ज्यामिति और चुम्बकीय व्यवहार की प्रागुक्ति कीजिए :
 - (1) $[Ni(CO)_4]$
 - (2) $[\text{Fe(CN)}_6]^{3-}$ [परमाणु क्रमांक : Ni = 28, Fe = 26]

 $2\times1=2$

1

1

अथवा

(iii) कारण दीजिए:

 $2 \times 1 = 2$

- (1) निम्न प्रचक्रण चतुष्फलकीय संकुल नहीं बनते हैं।
- $(2) \quad \left[\mathrm{Co(NH_3)_6} \right]^{3+} \quad \text{एक} \quad \mbox{आंतरिक कक्षक संकुल है जबिक} \ \left[\mathrm{Ni(NH_3)_6} \right]^{2+} \, \mathrm{एक} \, \, \mathrm{sign} \,$

खण्ड ङ

- **33.** (क) (i) $C_5H_{10}O$ आण्विक सूत्र वाला कोई कार्बनिक यौगिक (X) अपनी संरचनाओं पर निर्भर करते हुए विभिन्न गुणधर्म दर्शा सकता है । प्रत्येक की संरचना खींचिए यदि यह :
 - (1) धनात्मक आयोडोफॉर्म परीक्षण देता है।
 - (2) कैनिज़ारो अभिक्रिया दर्शाता है।
 - (3) टॉलेन्स अभिकर्मक को अपचित कर देता है और इसमें किरेल कार्बन है।

56/3/3

18

CLICK HERE

Answer the following questions:

- (i) When a coordination compound NiCl_2 . $6H_2O$ is mixed with AgNO_3 solution, 2 moles of AgCl are precipitated per mole of the compound. Write the structural formula of the complex and secondary valency for Nickel ion.
- (ii) Write the IUPAC name of the ionisation isomer of $[\text{Co(NH}_3)_5(\text{SO}_4)]\text{Cl}.$
- (iii) Using Valence Bond Theory, predict the geometry and magnetic nature of:
 - (1) $[Ni(CO)_4]$
 - (2) $[Fe(CN)_6]^{3-}$ [Atomic number : Ni = 28, Fe = 26]

 $2 \times 1 = 2$

1

1

OR

(iii) Give reasons:

 $2 \times 1 = 2$

- (1) Low spin tetrahedral complexes are not formed.

[Atomic number : Co = 27, Ni = 28]

SECTION E

- 33. (a) (i) An organic compound (X) having molecular formula $C_5H_{10}O$ can show various properties depending on its structures. Draw each of the structures if it
 - (1) gives positive iodoform test.
 - (2) shows Cannizzaro's reaction.
 - (3) reduces Tollens' reagent and has a chiral carbon.

56/3/3

19

- (ii) निम्नलिखित से सम्बद्ध अभिक्रिया लिखिए :
 - (1) वोल्फ-किशनर अपचयन
 - (2) हेल-फोलार्ड-ज़ेलिंस्की अभिक्रिया

3+2=5

अथवा

- (ख) (i) आप निम्नलिखित प्रत्येक यौगिक को बेंज़ोइक अम्ल में कैसे रूपान्तरित कर सकते हैं ?
 - (1) ऐसीटोफीनॉन
 - (2) एथिलबेंज़ीन
 - (3) ब्रोमोबेंज़ीन
 - (ii) निम्नलिखित यौगिकों को उनके इंगित किए गए गुणधर्म के बढ़ते हुए क्रम में व्यवस्थित कीजिए :
 - (1) $O_2N-CH_2-COOH, F-CH_2-COOH, CN-CH_2COOH$ (अम्लीय व्यवहार)
 - (2) एथेनैल, प्रोपेनैल, ब्यूटेनोन, प्रोपेनोन (नाभिकस्नेही योगज अभिक्रियाओं में अभिक्रियाशीलता) 3+2=5
- 34. (क) 25°C पर निम्नलिखित सेल का विद्युत्-वाहक बल (emf) परिकलित कीजिए : $Zn\left(s\right) \mid Zn^{2+}\left(0.1 \text{ M}\right) \mid | \text{ H}^{+}\left(0.01 \text{ M}\right) \mid H_{2}\left(g\right)\left(1 \text{ bar}\right), \text{Pt}\left(s\right)$ [दिया गया है : $E_{Zn^{2+}/Zn}^{\circ}$ = $-0.76 \text{ V}, \; E_{H^{+}/H_{2}}^{\circ}$ = $0.00 \text{ V}, \; \log 10$ = 1]
 - (ख) कोलराऊश का आयनों के स्वतंत्र अभिगमन का नियम बताइए । तनुकरण के साथ विलयन की चालकता कम क्यों हो जाती है ? 3+2=5

56/3/3

- (ii) Write the reaction involved in the following:
 - (1) Wolff-Kishner reduction
 - (2) Hell-Volhard-Zelinsky reaction

3+2=5

OR

- (b) (i) How can you convert each of the following compounds to Benzoic acid?
 - (1) Acetophenone
 - (2) Ethylbenzene
 - (3) Bromobenzene
 - (ii) Arrange the following compounds in increasing order of their property as indicated:
 - (1) $O_2N CH_2 COOH$, $F CH_2 COOH$, $CN CH_2COOH$ (Acidic character)
 - (2) Ethanal, Propanal, Butanone, Propanone
 (Reactivity in nucleophilic addition reactions) 3+2=5
- **34.** (a) Calculate the emf of the following cell at 25° C:

$$Zn\left(s\right)\mid Zn^{2+}\left(0\cdot1\;M\right)\parallel H^{+}\left(0\cdot01\;M\right)\mid H_{2}\left(g\right)\left(1\;bar\right), Pt\left(s\right)$$

[Given:
$$E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}, \ E_{H^{+}/H_2}^{\circ} = 0.00 \text{ V}, \ \log 10 = 1$$
]

(b) State Kohlrausch law of independent migration of ions. Why does the conductivity of a solution decrease with dilution? 3+2=5

56/3/3

(21)

- **35.** (क) (i) निम्नलिखित के कारण दीजिए :
 - (1) संक्रमण धातुएँ संकुल यौगिक बनाती हैं।
 - (2) मैंगनीज़ के लिए $E^{\circ}_{\mathrm{Mn}^{2+}/\mathrm{Mn}}$ मान अधिक ऋणात्मक है जबिक $E^{\circ}_{\mathrm{Mn}^{3+}/\mathrm{Mn}^{2+}}$ के लिए धनात्मक है ।
 - (3) जलीय विलयन में Cu+ आयन अस्थायी है।
 - (ii) पायरोलुसाइट अयस्क (${
 m MnO_2}$) से ${
 m KMnO_4}$ के विरचन से सम्बद्ध समीकरण लिखिए । 3+2=5

अथवा

- (ख) (i) निम्नलिखित की पहचान कीजिए:
 - (1) 3d श्रेणी की संक्रमण धातु जो केवल एक ऑक्सीकरण अवस्था दर्शाती है।
 - (2) 3d श्रेणी की संक्रमण धातु जो जलीय विलयन में +2 ऑक्सीकरण अवस्था में प्रबल अपचायक है।
 - (ii) निम्नलिखित समीकरणों को पूर्ण और संतुलित कीजिए :
 - (1) $\operatorname{Cr_2O_7^{2-}} + 14H^+ + 6Fe^{2+} \longrightarrow$
 - (2) $\text{KMnO}_4 \xrightarrow{\quad \text{tt} \quad \text{avi} \quad \text{tr}}$
 - (iii) मिश धातु क्या है ? इसका एक उपयोग लिखिए ।

2+2+1=5

- **35.** (a) (i) Account for the following:
 - (1) Transition metals form complex compounds.
 - (2) The $E_{Mn^{2+}/Mn}^{\circ}$ value for manganese is highly negative whereas $E_{Mn^{3+}/Mn^{2+}}^{\circ}$ is highly positive.
 - (3) Cu⁺ ion is unstable in aqueous solution.
 - (ii) Write the equations involved in the preparation of $KMnO_4$ from Pyrolusite ore (MnO_2) . 3+2=5

OR

- (b) (i) Identify the following:
 - (1) Transition metal of 3d series that exhibits only one oxidation state.
 - (2) Transition metal of 3d series that acts as a strong reducing agent in +2 oxidation state in aqueous solution.
 - (ii) Complete and balance the following equations:

(1)
$$\operatorname{Cr_2O_7^{2-}} + 14H^+ + 6Fe^{2+} \longrightarrow$$

- $(2) \quad \text{KMnO}_4 \xrightarrow{\quad \text{heat} \quad }$
- (iii) What is Misch metal? Write its one use.

2+2+1=5

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Senior Secondary School Examination, 2023
SUBJECT: CHEMISTRY (043) (56/3/3)

General	Instruc	tions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- The Marking scheme carries only suggested value points for the answers
 These are in the nature of Guidelines only and do not constitute the complete
 answer. The students can have their own expression and if the expression is
 correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark(√) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book.
	Giving more marks for an answer than assigned to it.
	 Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the
	title page.
	 Wrong question wise totaling on the title page.
	 Wrong totaling of marks of the two columns on the title page.
	Wrong grand total. Marks in words and figures not tallying/not some
	 Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list.
	 Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
	 Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME

Senior Secondary School Examination, 2023

CHEMISTRY (Subject Code–043)

[Paper Code: 56/3/3]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A	
1.	(b)	1
2.	(b)	1
3.	(a)	1
4.	(b)	1
5.	(a)	1
6.	(c)	1
7.	(d)	1
8.	(d)	1
9.	Award mark for any given option (as there is no correct option).	1
10.	(b)	1
11.	(d)	1
12.	(a)	1
13.	(c)	1
14.	(c)	1
15.	(c)	1
16.	(d)	1
17.	(a)	1
18.	(a)	1
	SECTION- B	
19.	(a) CH ₂ OH	1/2, 1/2
	, Cyclohexylmethanol (b) Br Br	
	, 2,4,6-Tribromophenol /2,4,6-Tribromobenzenol	1/2 , 1/2

XII_39_043_56/3/3_Chemistry # Page-**3**

20.	0.603	1/
20.	$t_{1/2} = \frac{0.693}{k}$	1/2
	$k = \frac{0.693}{60} \text{ min}^{-1}$	4.
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1/2
	$\frac{0.693}{60} = \frac{2.303}{t} \log \frac{100}{10}$	1/2
	$t = \frac{2.303 \times 60}{0.693}$ min	
	t = 199.3 min	1/2
21.	(a) $R - NH_2 + CHCl_3 + 3 KOH (alc.) \longrightarrow R - NC + 3 KCl + 3 H_2O$	1
	(b)	
	0 0	
	$ \begin{array}{c c} & \downarrow \\ & \downarrow \\$	
	O O O O O O O O O O O O O O O O O O O	
		1
	O	
	$\begin{array}{ccc} R - NH_2 & + & - & \stackrel{\stackrel{\longleftarrow}{C}}{-} & \stackrel{\stackrel{\longleftarrow}{O}Na^{+}}{} \\ (1^{\circ} \text{ amine}) & - & \stackrel{\longleftarrow}{C} & \stackrel{\stackrel{\longleftarrow}{O}Na^{+}}{} \end{array}$	
	[]	
22.	0	
22.	Positive deviation	1
	Because the addition of acetone breaks the H-bond of ethanol resulting in increase	
	in vapour pressure / interaction between ethanol-acetone is weaker than ethanol-	
22	ethanol and acetone-acetone interactions.	1
23.	(a) (i) Glycogen	1/2
	liver/muscles/brain (Any one)	1/2
	(ii) Starch is a polymer of α -Glucose whereas Cellulose is a polymer of β -Glucose.	1
	OR	
	(b)(i) Peptide linkage : A linkage formed when two amino acids are joined	
	through – CONH – bond. Clyansidia linkaga: When two managacharides are joined through avvgan atom.	1
	Glycosidic linkage: When two monosaccharides are joined through oxygen atom. (ii) Nucleoside: Base + Sugar	1
	Nucleotide: Base + Sugar + Phosphate	1
	(or any other correct difference)	
24.	(a) A Galvanic cell that converts the energy of combustion of fuel directly to	
	electrical energy.	1
	Advantages: (1) More efficient.	
	(2) Pollution free. (or any other suitable advantage)	1/2+ 1/2

XII_39_043_56/3/3_Chemistry # Page-**4**

24.	OR	
	 (b) X is better. Due to higher standard reduction potential of iron than X, iron will not get oxidised. 	1 1
25.	(a) Because acetate ion is less stable than formate ion due to + I effect of -CH ₃ group.	1
	(b) Because of the resonance stabilisation of conjugate base.	1
	SECTION-C	
26.	$\log \frac{\mathbf{k}_2}{\mathbf{k}_1} = \frac{\mathbf{Ea}}{2 \cdot 303 \mathbf{R}} \left[\frac{1}{\mathbf{T}_1} - \frac{1}{\mathbf{T}_2} \right]$	1
	$\log \frac{2k_1}{k_1} = \frac{Ea}{2 \cdot 303 \times 8 \cdot 314 \text{J K}^{-1} \text{mol}^{-1}} \left[\frac{1}{300} - \frac{1}{310} \right]$	1
	$E_{a} = \frac{0.3010 \times 19.147 \text{ J mol}^{-1} \times 300 \times 310}{10}$	
	$E_a = 53598 \cdot 2 \text{ J mol}^{-1} \text{ or } 53.598 \text{ kJ mol}^{-1} \text{ or } 53.6 \text{ kJ mol}^{-1}$ (Deduct ½ mark for no or incorrect unit)	1
27.	(a) $CH_3(CH_2)_4 - CH_3$ (b) $HOOC - (CHOH)_4 - COOH$ (c) $HOCH_2 - (CHOH)_4 - COOH$	
	CHCOH (CHOH) ₄ CH ₂ OH	1 x 3
28.	(a) (i)	
	A= $B=$ $C=$ N_2 +CF	1/2 x 3
	(ii) $A = CH_3CH_2CN$ $B = CH_3CH_2CH_2NH_2$ $C = CH_3CH_2CH_2OH$	½ x 3
	OR (b) (i) O O O O O O O O O O O O O	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	(ii) $CH_3COOH \xrightarrow{NH_3} CH_3CONH_2 \xrightarrow{Br_2/KOH} CH_3NH_2$	1
	(iii) $CH_3CH_2CN \xrightarrow{LiAlH_4} CH_3CH_2CH_2CH_2NH_2$ (or any other correct method of conversion)	1

 $XII_39_043_56/3/3$ _Chemistry # Page- $\mathbf{5}$

20	W. 1000	
29.	$\Delta T_{f} = i K_{f} \frac{W_{B}}{M_{B}} x \frac{1000}{W_{A}}$	1/2
	$0.45 = i \times 5.12 \text{ K kg mol}^{-1} \times \frac{0.3 \text{ g}}{60 \text{ g mol}^{-1}} \times \frac{1000}{30 \text{ kg}}$	1
	i = 0.527	1/2
	$\alpha = \frac{1-i}{1-\frac{1}{n}}$	1/2
	$\alpha = \frac{1 - 0.527}{1 - \frac{1}{2}} = 0.946 \text{ or } 94.6\%$	1/2
30.	(a)	
50.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccc} H & H & H & H & H \\ H - C - C - C + H & & & & & & & \\ H & H & & & & & & & & \\ H & H & & & & & & & & \\ H & H & & & & & & & & \\ H & H & & & & & & & & \\ \end{array} $	1
	H - C = C + H $H + H$ $H + H$	1/2
	(b)	
		1
	CH_3	1
	SECTION-D	
31.	(i) C ₆ H ₅ MgBr / Phenyl magnesium bromide is formed.	1
	(ii) (1) $CH_2 = CH - CH_2 - CI$	1/2
	$(2) (CH_3)_3 C - Cl$	1/2
		1
	(iii) (1) $CH_3CH_2CH_2CH_2 - C1 \xrightarrow{Nal} CH_3CH_2CH_2CH_2 - I$	1
	(2) $CH_3CH_2CH = CH_2 \xrightarrow{HBr} CH_3CH_2CH_2CH_2-Br$	4
	$\xrightarrow{\text{NaI}} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2 - \text{I}$	1
	OR $(iii) (1) CH3 - CH = CH2$	
	$(2) \qquad (2)$	1
	Ç1	
		1
	OCH ₃	

XII_39_043_56/3/3_Chemistry # Page- $\boldsymbol{6}$

32.	(i) $[Ni(H_2O)_6]Cl_2$, 6	1/2 , 1/2
	(ii) Pentaamminechloridocobalt(III) sulphate	1
	(iii) (1) [Ni(CO) ₄] – tetrahedral, diamagnetic	1/2, 1/2
	(2) $[Fe(CN)_6]^{3-}$ – octahedral, paramagnetic OR	1/2, 1/2
	(iii) (1) Because Δ_t is not sufficient for the pairing of electrons / Crystal field splitting	
	energy (CFSE) is not sufficient for pairing of electrons.	1
	(2) NH ₃ being a strong field ligand can pair up the electrons to form d^2sp^3 but	
	cannot pair up in Ni^{2+} as two vacant d-orbitals are not available. $\therefore \mathrm{sp}^3\mathrm{d}^2$ is formed.	1
	SECTION-E	
33.	(a) (i) $CH_3 - CH_2 - CH_2 - C - CH_3$	1
	O	
	$(2) \qquad (CH_3)_3C - CHO$	1
	CH ₃	-
	$(3) CH_3 - CH_2 - C - CHO$	1
	H	
	(ii)	
	(1)	
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	1
	(2)	
	$R-CH2-COOH \xrightarrow{\text{(i) } X_2/\text{Red phosphorus}} R-CH-COOH$	
	(ii) H ₂ O X	1
	X = Cl, Br	
	OR	
	(b) (i) 1.	
	сосн₃ соок соон	
	$\frac{\text{KMnO}_4 - \text{KOH}}{\Delta} \longrightarrow \frac{\text{H}_3\text{O}^+}{\Delta}$	
	2.	
	CH ₂ — CH ₃ COOK COOH	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

XII_39_043_56/3/3_Chemistry # Page-**7**

	3.	
	Br MgBr O=C=O	
	ether O-C-O	1 x 3
	о соон	
	$OMgBr \longrightarrow H_3O^+$	
	(or any other suitable method of conversion). (ii) NC- CH ₂ - COOH < F- CH ₂ - COOH < NO ₂ - CH ₂ COOH / F- CH ₂ - COOH < CN- CH ₂ - COOH < NO ₂ - CH ₂ COOH	1
	(2) Butanone < Propanone < Propanal < Ethanal	1
34.		1
	(a) $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{2} \log \frac{[\text{Zn}^{2+}]}{[\text{H}^{+}]^{2}}$	
	$= 0.76 \text{ V} - \frac{0.059}{2} \log \frac{[0.1]}{[0.01]^2}$	
	[0 01]	1
	$= 0.76 \text{ V} - \frac{0.059}{2} \log 10^3$	
	$= 0.76 \text{ V} - \frac{0.059 \times 3}{2}$	
	4	1
	$E_{cell} = 0.671 \text{ V}$ (b) Limiting malar conductivity of an electrolyte is equal to the sum of individual	1
	(b) Limiting molar conductivity of an electrolyte is equal to the sum of individual contributions of cation and anion of the electrolyte.Because no. of ions per unit volume decreases.	1
35.	(a)(i)	1
	(1) Because of small size, high ionic charge and availability of d-orbital.	1
	(2) Because of stable half-filled 3d ⁵ configuration in Mn ²⁺ .	1
	(3) Cu ⁺ ion (aq.) undergoes disproportionation to Cu ²⁺ (aq.) and Cu /	1
	$2 \operatorname{Cu}^{+}(\operatorname{aq.}) \longrightarrow \operatorname{Cu}^{2+}(\operatorname{aq.}) + \operatorname{Cu}.$	•
	(ii) $2\text{MnO}_2 + 4\text{KOH} + \text{O}_2 \longrightarrow 2\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O}$	4
	$3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$	1
	(or any other suitable method of preparation)	1
	OR	
	(b) (i)	
	(1) Sc	1
	(2) Cr / Fe	1
	(ii) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 14 \operatorname{H}^+ + 6 \operatorname{Fe}^{2+} \longrightarrow 2 \operatorname{Cr}^{3+} + 6 \operatorname{Fe}^{3+} + 7 \operatorname{H}_2 \operatorname{O}$	1
	$(2) 2 \text{ KMnO}_4 \xrightarrow{\Delta} \text{ K}_2 \text{MnO}_4 + \text{MnO}_2 + \text{O}_2$	1
	(iii) An alloy of Lanthanoide (95% lanthanoid + 5% Fe) is Mischmetal.	1/2 ,
	It is used in bullets, flints etc.	1/2

 $XII_39_043_56/3/3$ _Chemistry # Page-8

